PROGRESS REPORT: Unmapped U.S. Waters

Knowledge of the depth, shape, and composition of the seafloor are foundational data elements necessary to explore, sustainably develop, understand, conserve, and manage our coastal and offshore natural resources. The 2019 **Presidential Memorandum on Ocean Mapping of the United States Exclusive Economic Zone and the Shoreline and Nearshore of Alaska** and the global **Seabed 2030** initiative make comprehensive ocean mapping a priority for the coming decade. This report, updated annually, will track our progress to this important goal.

Percent of U.S. Waters Still Unmapped in 2019

U.S. waters						Total Area =	3,592,000	square nautical miles (snm)
			549	%	57% - 2018 59% - 2017			
1. Atlantic and Gulf of Mex	со							Total Area = 472,200 snm
	4	3%	48% - 2018	7				
2. Great Lakes			1.570 202					Total Area = 46,600 snm
								95% 95% 2017 2018
3. Caribbean								Total Area = 61,600 snm
	4	2%	4% - 2018 45% - 2017					
4. Alaska								Total Area = 1,080,200 snm
						72%	'3% - 2018 74% - 2017	
5. Pacific (CA, OR, WA)								Total Area = 239,700 snm
24%	29% - 2018 29% - 2017							
6. Pacific Remote Islands &	Hawaii							Total Area = 1,691,700 snm
		5	50%	53% - 20 55% - 2	018 2017			

....

Mapping the Seafloor

Representing ~40-200 meters water depth, mapping this area is ideal for ships using multibeam sonar technology alongside autonomous systems as a force multiplier. Conditions are not usually suitable for aerial survey methods. Concerns about safe navigation require a high level of data accuracy.

Deep water

Representing water depths >200 meters, mapping this area is ideal for ships using multibeam sonar technology. Conditions are not suitable for aerial survey methods and navigation safety is not a primary concern in this area.

Strategies for Filling Gaps

multibeam sonar technology.

Concerns about safe

level of data accuracy.

unmanned

navigation require a high

Partnerships and technology innovations are key to fulfilling seafloor mapping goals. As technology improves, there are two primary ways to contribute: (1) participate in U.S. mapping coordination activities, and (2) share your data. Publicly accessible bathymetry benefits numerous communities of users and the coordinated collection of new data promotes the integrated ocean and coastal mapping goal to "map once, use many times." For the latest status on these efforts, visit http://iocm.noaa.gov/seabed-2030.html.

Research Crowdsourced Bathymetry Governments Industry NOAA Charting and Exploration Public (e.g., hydrographic offices, industry, academic/research institutions)

Google, ESRI

Seabed 2030

Crowdsourced bathymetry is the collection of depth measurements from vessels with standard navigation instruments during routine maritime operations. It is a powerful source of information that helps to fill gaps where data is sparse, especially in places where government survey vessels do not have the resources to go in the next ten years.

